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1 THE SOMMERFELD EXPANSION 1

Abstract

This Document will provide a proof for the Sommerfeld expansion formula used for integrals involv-
ing the Dirac Distribution and a sufficiently well behaved but otherwise arbitrary function. Also included
from my previous works is the derivation for the formula connecting the values of the Riemann-Zeta
function for even integers with the Bernoulli numbers, which is used within the proof. The main result
will be equation (23/24) on page 6. Also two different motivations/ways for the reshaping of the integral,
the first step in the derivation, are provided and an additional treatment in terms of fugacity is given.

1 The Sommerfeld Expansion

1.1 Transformation of the Integral
1.1.1 First Derivation of the Intermediate Result

Following and correcting a discussion in L. Landau, E. Lifshitz: Statistical Physics Part I, 3rd Edition, page
169/170. Notation is slightly changed for convenience.
We want to approximate the following integral for a function f (€) such that the integral I converges.

I = f #de (1)
0 e 41

We transform the integral by a change of coordinates via
(e—w)/(kpT)=z ,e=kpTz+u ,de/dz=kpT or de=kpTdz

* kgTz +
I = J Mhﬂ’dz
—ufesy €T HL
0
kgT, (kpT.

_ kBTf MCILER ) M —f BZ”“) dz
(ks T) e*+1 +1
u/(kpT)

f(u—kpTz) kBTZ) f(kBTZ +M)

= kBTJ = +kpT ) 2)

0
Now, since = +1 = efjrl =1-= +1 we split the first integral and hence:

u/(kpT) u/(kgT) 00
1 f(kpTz+pu)
I = kgT —kpgTz)dz—kgT —kgT. d kgT ———=d
? fo f(,u ’ Z) : ? Jo f(M B Z) e‘+1 £t ks et +1 “

0

Transforming the first integral backviae=u—kgTz ,de/dz=—kgT or dz=de/(kpT)

" (ks )
kpTz) (kpTz+
f f(e)de—kBTf f(“ 572) +aT | A S 4 g 3)
o 0 e* +

Now comes the first approximation (up to now this was all exact and simply manipulation of the integral
to bring it into a suggestive form). We replace the upper limit in the second integral with infinity. This is
legitimate since u/ (kg T)~ Er/(kpT)>> 1 and the integral is rapidly convergent:

u 00
f(e)de+ kT flutkpTz) — fu—kpTz) @)
0 0 e+1

We now Taylor-Expand the function f around u and obtain:
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I~ fuf(e)de+kBTL {Zof FH)(k T2y - I (“)( kpTz )"}%dz
- J fle)de + kBTZ O f[zn ! g‘)‘, 2(kpT)2"Y Z:dz
_ JO f(e)de+zf o 5‘;) ST Om%dz
= Luf(e)dwnz_;%mmz%n ®)

1.1.2 Seocond Derivation of the Intermediate Result

A further approch to reach this result is presented in Reference [2]. In this document though, the notation
is altered from the reference to be conform with the first discussion. Consider again the following integral:

I f #de - f F(e)D(e)de ©)
0 0

em +1

where D(¢€) is the Dirac Distribution. Define F(x) by

€
F(e) = J f(e)de @
0
We now integrate by parts the former integral:
o0

I = [D(e)F(e)]S"—J D’(€)F(e)de (8)

0

The first term vanishes since D(00) =0 and F(0) = 0. Hence we are left with

I = —J D'(e)F(e)de 9)
0

Now, when evaluating this integral the important point that Sommerfeld made is to note is that D’ is
sharply peaked at €e = u ~ Ep, particularly at low temperatures T. Thus we expand F (€) around € = u:

X p(n]
F(e) = Z n!(,u) (e—w)" (10)

n=0

This transfroms the integral into the following convergent series:

00 1 o0 , "
= —ZOEF["](M)J; D'(e)(e—u)" de (11

Yet again, change of variable via z = (e —u) /kzT, dz/de =1/(kpT) brings us to the form:

, . o~ (ks T)" Fl (p) [ o2,
_anF[ (H)f (kBTz) dz = Z o Joo(ez+1)zz dz (12)

n=0

The first step in the above sequence was replacing the lower bound by —oo which is legitimate since D’
goes to zero quickly away from € = u. This step is done to realize that odd integers n do not contribute in
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is an even

2
1
the sum obtained last (later the limit of integration will be set back to 0): z+1)2 = (Zcosh(z /2))

function (cosh is an even function), and hence when multiplied by an odd functlon (z27*+1) and integrated
over the real line gives zero! Since the integral for n =0 is 1 we are left with:

~
2

&N (kg T)*" Fl2nl (u) T er 2n
Fu) + Z:; @n)] (2J0 il

& (kp T F211 (1) -1 L0 (T, 2
F(u) +Z 2n) Z{LZ—HZ ]o * o (2n)ez+1

2(kpT)*" Fl2nl (u)
Z 2n-1)

IZn (13)
=1

Now we replace F by f to get:

" 2(kp TY" f2n 1 (1)
Lf(em(e)de ff(e)d +Z T a— (14)

Note how equation (5) and (14) coincide.

1.2 The Missing Integral-Factor I,,

The integral I, can be computed using the definitions of the Riemann-Zeta function ¢ (x) and the Gamma
function I'(x) and furthermore the Geometric Series (see Appendix):

o0
I'(x) = f z* e *dz
0

o= Y

=1

* z
sz = for |z|<1
yy 1—-z

B

With those tools at hand we are ready to compute the following integral:

% zx1 * 1
I, = J. ——dz = f zx_le_z( — )dz
o e+l 0 1+e7*
00 00 00
= f z¥le™® (Z(—ez)") dz = J Z(—l)”zx’le’“*”)zdz (15)
0 n=0 0 n=0

Now we change the variable of integration to transform the inner integral into the Gamma function:

z’=(1+n)z, z:(lin)z’, dz’/dz=(1+n) or dz=(1in)

x—1
— n ' -z’ _1yr—1 x-1 —zi
I, = J Z( 1) n+1) e n+1 J Z( )"z e nxdz
2¢ -2
_ _ n+1_ —
- ;( e = (5

Here I used equation (94) to relate the infinite sum over n to the Riemann-Zeta function:

)z(x)r(x) = (1-2") @) 16)

i (-pr  2r-2 o1
L (n+1p 2 P
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..to express the sum within the lengthy term in terms of the Riemann-Zeta function.
If x =2k is an even integer we can use the explicit expression derived later, see equation (84), for {(2n) in
terms of Bernoulli numbers B,;:

B
(—1)k+1(2n-)2szl’;)| = ((2k) for ke Integers

This gives for I, using equation (16) the following expression:

0 Zz2k=1 22k _ 9 Boy
Ly = dz = —1)kH2k g2k —==_ ) (2k —1)!
2k L i1’ ( 22k ) (( S ok ) Y
ZkB 22k—1 -1
_ (sz _ 2) (_1)k+17f4_k2k _ (T) (=1)F1 72k By, a7

1.2.1 A Special Case and a Similar Integral

This section derives additional interesting results which are not needed for the Sommerfeld expansion, but
easily derived at this point with the previous setup.
For x =1 we go one step back to get a result and note that the Taylor expansion of In(1 + x) reads:

_ S _ n+1xn
In(1+x) = ,,2:1( 1) - for |x|<1
[09] 1
_ _1\ntl =
In(2) = nEZI( 1) . (18)

Thus we get for I; using an intermediate step in equation (16):

_ > 1 _ . _ n+ll _
L = L ol = ;( D" -r) = () (19)

An other intergral of interest can be computed using the same technique as in the previous section:

00 14 00 1 00 1) .
I, = J Zz z =J z"_l( ~ )dz = J z% 1 (e‘ZZ(e_Z) )dz

o €1 0 er—1 0 n=0
00 [09]
Z f Z%-1 e—(1+n)zdz (20)
n=0 JO

Analogous to the previous treatment we change the variable of integration to transform the inner integral

into the Gamma function: z’ =(14+n)z, z= (lin)z’, dz’/dz=(1+n) or dz= (1Tln)dz/
00 00 / x—1 00 00
z ;1 1
I, = J ( ) e *? dz/ = f ¥ le™* —dz

; 0 1+n 1+n ; 0 n*

o0 00 1
= J zx’lefzzﬁdz = T'(x)¢(x) 1)

0 n=1

For even integers this becomes:

n n B2n
remien) = @n-Di-0™en™ o

_ (=1)"+1(27)2" By, _ (_4)’1*17-[21132" _ JOO z2n-1qz 22
0

IZn

4n n e —1
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1.3 The Result

Going back to our original problem we find from equation (14)/(15) and (17):

I = f #de = f f(e)D(e)de
0 0

el +1

4

2n—-1)

(2n)!

n— ]
= f f(f)d€+zf2 MG (kpTY" (22" =2) (=1)"*' 7" By,

s X fl2n-1] n—-1_
f f(e)de+zfz—l(“)z(km2"{(%)(—1)"“#"32"}

360

2 £/ 4 £
f f(e)de+ﬂ2(kBT6) S | Ttk W)

3176 (kg T)6 f///// (‘Ll,) 12778 (kg T)3 f/////// (‘u)

15120 604800

+...

(23)

(24)

This is the final result, where in equation (24) the Bernoulli Numbers derived in the next section were used
(see recurrence formula and table 1 for B, in the Section 2.2). The formula is an asymptotic approxima-
tion and not a convergent series, as L. Landau points out (see Reference [1]) and is seen in the picture

below .

This is equivalent to the approximation of the Fermi-Dirac distribution by the Unit-Step-function and
terms involving derivatives of the generalized Dirac Delta Distribution 6 (x):

5[2n
D(e) = —(— ™ O(u— 6)+Z

1]

2n )'

(k T)2l’l (22n

2)(=1)"7*" Bz

value

% Deviation from exact result: Jommerfeld-Exp.

[red] w=. Tnit 3tep function [blue]

TiT(termi)

[3]

—d

a

\“

1}

5

N

S

p=35.0eV
fe)="(3/2)

\

-1

Sidenote: Setting kg =1 and T =1 we can generalize the result for n >> 1:

J ex{fﬁld J f(x)dx—i—zf
0

J Fas + T ) +
0

[2n—1

(2n

)l
ﬂ" /1!
3607 (n) +

]
n) 2271 _ 2) (_1)n+1ﬂ.2n B2n
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1.4 Application: y«— Erand cy «— Ef

Again following Reference [2] we derive the dependence of y on Temperature T
From the lecture we know the density of states for the free electron gas in a box in terms of Fermi-Energy
Er and the total number N of electrons is:

3N e _ * 32 3 Oo1/2
gle) = EE_F(E_F) N—JO g@Dde > B =] P 25)

Now we see that for the Sommerfeld Approximation we should set f (€)= €!/? and carry along all the pref-
actors. We thus get the following (where the general form of the derivative was observed):

3 o) 1/2
Ela.:‘/z A 5 (J 1/2d6 + Z (2 )' d) z(n )l (kB T)Zn (22}1 _ 2) (_1)n+17.L.2n an)
0

— 3/2+ Z ((|3+4(n 2)“' ,LL 5*“(" =2 )(k T)Zn (22n 2)( 1)n+1 ZnB

(2n)! 22n-1
4n—5
_ (1+23((|(’; )'D )(k T)Zn(l ol- 2n)( 1)n+1 2nB )
3 72 1 37 L1(-1)3
— 3/2 2% k TZ —1/2 k - —5/2
w5 ks Ty Su 2360( )222“ +
372 (kgT\> 7749 (kzT\*
= 3214 2= — | = 26
H(+24(,u)+36016(u)+ (26)

..using the following Power-series expansion

n . oxonm-Do(n—k+1) 0 I'(n+1) ‘
+x)7 = ; ! o= ;F(n—k+l)r(k+l)x @7)

..and keepinginmind n!! = WM = n(n—2)...1 for odd integers we get:

o k
PR L C/E L2 (23((|4n 51! )(k o 21_2,1)(_1)"“%2”32”)
k n=1

- re/sB3-ck+nrk+1) (2n)!

n2 (kT 7t (kpT)*
12 u 180 3

1 (ke TY 2 (KT (28)
H 12\ u 180\ u

Inversion of this equation to the same order in Ep gives the following result (this can be done by hand,
basically comparison of coefficients, but Mathematica’s bulit in function InverseSeries[] comes in handy

here):
kgT\? kgT\*

This whole procedure can be easily implemented in Mathematica to find the coefficients up to arbitrary

order of (kaT) or (kZT) respectively. (For an alternative way: see Reference [10]).

In a similar way we obtain the specific electronic heat in terms of Fermi energy, making use in the
calculation of the formula for u in terms of Er which was derived before.

E]: [o¢)
Uy = f g(e) e D(e)d u = f g(e) e D(e)de cy = iu (30)
0 0 aT
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Sommerfeld Expansion: Fermi Energy - chemical potential relation

In[z40]:= Clear[u, KB, T, Ef];
uptol = 10;

EFSeriesHEW =
FullSimplify |
Series|
Uk

pal
Gamma[2 /3 + 1]

Gamma[2 / 3-Ek + 1] Gamma [k + 1]

[“i“"s (Abs[4n-5])!!

TEE (1-24(1-21n)) » (-1) * (n+1) BernoulliB[2n] « (5BT) A (21) 74 (21) s * (-2 n)]“k
na n -

{u, Infinity, uptol}]]:

Print["EFermi = ", Simplify[ (Normal [EFSeriesHEW] / u)] »u]
SeriesMn = InverseSeries [EFSeriesNEW, Ef];
Print["y = ", Simplify[ (Normal [SeriesMu] /Ef) ] = Ef]

EBT
Print["Ef Series coeff. for (——)*n are: (format: {n,coeff. N[coeff.]})",
u
o A 3 ) EBT
Table[{n, Coefflc:lent[Smpllfj{[(Nomal [EFSeriesNEW] /u)], | —— "n] .
u
EBT
H[Coefficient[Simplify [ (Normal [EFSeriesNEW] /u)1, [—] ~n], 3]}, {n, 2, uptol, 2}]]
u

EBT
Print["mu Series coeff. for (F)“n are: (format: {n,coeff. HN[coeff.]}}",

kB
Table [{n, Coefficient [Simplify [ (Normal [SeriesMu] /Ef)], ( =

T
£ ) o],

P R R . EBT
N[Coefficient[Simplify [ (Normal [SeriesMu] /Ef)], (?) *n], 3]}, {n, 2, uptol, 2}]]

1563139 kB 7° T 26093 kB* #*T'  169kBfAf TP kBT kBEAMTE |
+ + + + L
18662400 L1t 1555200 ut 25920 uf 180 ut 12upt )

oufisl EFermi = |1+

12 Eft S0Ef* 25920 Ef* 777600 Ef* 15360 E£10

At Tt kBimtT? 247kEPAf TR 16201 kB TP 1487 kB A TYY

u = Ef |.1-

KBT
Ef Series coeff. for (——)~n are: (format: [n,coeff.,N[coeff.]})
o

nt mt 169 7 } { 26093 7 } {10 1563139 7
r r - r L

{2, =, 0.022), {a, — 0.541}, {6, TR 1555200 ' 18662400

— , 7.84x103}}

KBET
mu Series coeff. for nij: ~n are: (format: {n,coeff.,N[coeff.]})
k4 4

{{2, -I—z, -0.822}, {4, -;'—0, -1.22}, {6, -%, -9.16}, {a, -%, -199.}, {10, -%:0", —9.07)(102}}

Sommerfeld Expansion: Fermi Energy - electron Heat Capacity relation

InfgH):= Clear[u, kB, T, Ef];
ArbFuncle_] :=€*(3/2);

7
uIntegral := juMme[e] de + Z‘. [(2* (2n) -2) (XBT)~(2n) 7+ (2n) (D[ArbFunc[e] ’({;’)an_ /- ex
o na n) !

3N

K T RB' AT 247EFT AT 16201kB°A° T 1487RBVY A0 TV
2Ef~(3/2)

In ral| /. Ef |1- - - - - :
ulnteg ] = [ 12 Ef2 B0 Ef 25920 EfF 777600 Ef 15360 Ef10

EAV:[

SeriesEF = Series[BAv, {Ef, Infinity, 71}]:
Print["E = ", HSeriesEF = NHormal [SeriesEF]]
Print["cw = ", cvSeries = D[NSeriesEF, T] /. Ef -= EB T[]

T
Print["c\a’ Series coeff. for kB(E)*n are: (format: {n,coeff.,H[coeff.]}) ",

- - T L B T
Table[{n, Coefficient[cvSeries, kB (E) *n], N[Coefficient[cvSeries, kB (E) ~n], 3]}, {n, 1, 5, 2}]]

3EfN  kB*NAT! 3kBiNAtT 247kBPNAP TP 10367 kBT HAYTY
= + - -

5 4Ef 80 Ef? T T 12096E 259200 Ef7

10367 BNA*TT  247kBNAFTF  3kBNA*T?  kBNA'T
cV = - - - .
32400 TE? 2016 T£S 20 T£? 2TE

3nnt

T wrt
cV Series coeff. for kBu:Ej:"n are: (format: [n,coeff. N[coeff.]}) {{1, T), 4.93N}, {3, -

r

, -14.6N}, {5, -

2470 A

2016

(-1) * (n +1) BernoulliB[2n] ] :

, -118. N}}

T N V- R NP B BN Y- R

[T [y WP iy T
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From the Mathematica file we read off the electronic contribution to the specific heat in solids pre-
dicted by the Sommerfeld-Theory, where kg Tr = EF:

m2 T 3nt r TN? 24778 1 TN®
o = ko (T (L) (LY I Ty on
2 \Tf 20 \ Tf 2016 \ Tr

1.5 Treatment in Terms of Fugacity / Fermi- and Bose-Functions f, (z), b, (z)

In statistical physics it is common to define the fugacity z by z = ef# = e#/(¥sT), The motivation or context,
along with the definitions can be found in IdealQuantumGases.pdf and the corresponding Mathematica
notebook fermi.nb, both located on the lecture notes homepage of James J. Kelly on
http://www.physics.umd.edu/courses/Phys603/kelly/.

Defined is the Fermi Function by the following similar integral:

@ o= [ ©2)
Ma) = ) Fe ™

For small z, this can be expressed as a power series as mentioned and calculated in the Mathematica file
by the program function Series/] (Reference [12]). I will derive this expansion by hand in the following lines:

1 [~ 1 1 [~ >
v— v— — —x\ k
mf x l(m)dx = mf x 1(ze xZ(—Ze *) )dx
0 0 k=0
z & x
— (_Z)kj xv—le—x(k+1)dx
OPI

z = “rox ! o1
- m;(_z)kjo (k+1) ¢ hrn®

fr(z)

z N k 1 N k1L
= _ — T — — —
o) ;( AT Gy ;( 2N
o Nk
= —Z( Z,) forall 0<z<1,v>0 33)
k=1 kY

The limiting value for v — oo is seen to be z since in the sum only k = 1 will contribute:

fo(z) = 2z (34)

also note the following recursive relation, which are useful in handling the fermi-functions:

o X, (—z)F 1 o
5@ = Z( 2 =—éf1f—1(z) = 25— fr(@) = —fra(@) (35)

v—1
k=1 k

A similar series expansion can be given for BE integrals, the Bose Function is definde by:

1 © vl
b,(z) = F(V)L z—lex—ldx (36)

It seems as if the Fermi-Functions and the Bose-Functions, which are those kinds of integrals, are defined
slightly different depending on the paper or book they appear in. Another definition will appear shortly on
the side to see how they convert into each other. The derivation now for the expansion is analogously to
the expansion of the Fermi-Function we have seen before:
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L L g

o) RRa Eere

I(v
_ 1 < 1 p=a(k+1) 1 < X V_l _
TOT(v kz J dx_ kz k+1 ¢ (k+1)dx
Zk+1

— . k+1
- F(V);Z F(V)(k+1) Z(k+1) ka forall 0<z<1,v>0 (37)

Also here we note off the following obvious properties:

bo(2) = 2;  by(2) = 2by s (2) (38)
Jz

This series expansion establishes the useful relation between f, (z) and b, (z), which can be found in
a somewhat different notation in Reference [13]. For completeness, since in theoretical applications their
notation seems to be common, I will compare them shortly:

1 xP 0 o ekn
B0) = T ) s o Bl = b€ b () = By () Byl =Y e
1 xP i (=1)k*1 ekn
F, = d F, = m); =F F = —_—
L) = o) e = B0 = s Sl = R0 )= Y
(The two series hold for n < 0) However, in our notation the relation is derived the following way:
2 (—z)F -z z2 2z X, [ zk z2k 2 5
’ = -y —— = [+ -4 )= 2| =b(2)-=b, 39
fr(2) e kv TP ; kv T(2k) v(?) 2v (%) @9

This is of importance since there are numerous different approximations to the Bose-functions as well.
Some of them, for example those treated in Reference [13], use Chebyshev Polynomials and are extremely
good and the series are fastly converging.

Another useful approximation to the Fermi-Function F, () is the generalized approximation put for-
ward by Aymerich-Humet, E Serra-Mestres and J. Milldn (See Reference [14]). It is a fit-model approach
that is accurate up to a few percent and works over a wide range of ) and sensible values of p:

-1
N (p+1)2rt1 e
T(p+1)F,(n) =~ (b+7’]+(|7’]—b‘c+a6)l/c)p+l Y rES) (40)

- (148 1)+ - 121/2 b = (1.840.61 = (2+(2-v2)27
a = (+Z(p+)+E(p+)), = (1.8+061p), c = (2+(2-v2)277)

In the treatment with the form of the integral given by equation (32), for large z, Sommerfeld’s lemma
is derived in a similar way to the treatments we have seen before, using again the idea of the function
being a Unit-Step function to first order and then, this time, adding and substracting corrections, where
the error in the approximation comes in here because of changing the limits of the second integral to —oo
in the second line. The hint for this approach is to be found in the Mathematica file fermi.nb where the
Mathematica function Series/] is used again (Reference [12]). I will derive the general formula by hand,
where again equation (27) and the equation (17) for I»; are used, listed here once more for convenience:

> I'(n+1) 72k By
1 no _ k , I — 22k_2 -1 k+1
(1+x) Zkzor(n—k+1)r(k+1)x e = )& 4k
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The derivation to the general expansion formula goes like this:

1 xV~ldx
fv(z) = ]
rv)), e* oglz) 41

1 log(z) 00 -1 log(z)
v—1
™ f o J oo 11 f
0 log(2) -

P4

x’l/

- (1 ~

10

1

v 00 v—1 0
= L{M.F mdx_f (log(z)—x)"_l (1_ e—x1+1)(_dx)}

r'(v) % 0 e +1
1 {(log(z)) * (x+log(2)" " - (log(2) —x)"" }
= dx
F(v) % e’ +1

_ 1 (log(2))" v—1 X v
= ﬁ{ v L“"g(z)) ( (mg(z)) _(1_

X vl 1
log(z)) ) ex+1dx}

_ 1 (log(z)" > I r'(v)
T T v { L(logm) V[;F(v—k)l"(k—i—l)((

_ (log(v))* > I r(v)
= m {1+L (log(v))™ v [kz:

_ (log(v) -1 r(v+1)
= ToTD {l—i-f (log(v)) Z

_ (log(»)" X r(v+1) 2 ”
- T(v+1) {H; I'(v—2k+1)T(2k) (log(z2))* (2

(log(v))" {1 . i C(v+1) (22k-1-1) (

T(v+1) & I'(v—2k+1I(2k) (log(2))*

k

2 xzk 1
(v —(2k =)k —D+1) (log(2)) % IL eX+1dx}

—2) (-1

)k+1 2k B
4k

ZkB
k+1 70 2k } = F, (log(z))

Going back to chemical potential we have Sommerfeld’s lemma. Here it reads:

fv(eﬁﬂ) A (Br) (1+ (v —1)—(/3’,u) +v(v=1v-2)(v— 3)%(/511) +.. )

rv+1)

I'(v+1) — I'(v—-2k+1)I'(2k)

By (1+§: C(v+1)(22k1—1) (ﬁu)—zk(_l)kﬂ @) ~ F_1(Bu) (42

Similarly now, as is done in Reference [11], one can now also compute quantities like the internal energy in

terms of fermi functions. For example we have

Summarizing, in this view we found:

00 00 3/2

[y Dg©ede ] Jo Homdx
o - 00 1/2 -
J, D(e)g(e)de [, Fmdx

B

T I'(5/2) f5/2(2)

T3/2) fo(2) 43)

X k —X k] 1 q
log(z)) _(log(z)) | 1™

X 2k+1'| 1
— T -k + DT (@k+D+1) (log(z)) Jex+1dx}

}

(41)

someN' (_eﬁﬂ)k
— kv

k=1

fv (eﬁu) ~

(Bu)" (Hi T(v+1)(22k1-1)

T(v+1) & T(v—2k+ 1) (2k)

for0< (z=eft) <1

ZkB
(ﬁﬂ)_Zk (—1)F+ %) forlarge (z =eft) >>1
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2 The Bernoulli Numbers B,

2.1 The Generating Function

By generating function usually a function is meant, whose Taylor expansion yields the seeked for expres-
sion. In our case it will be a simple fraction:

X
f)=—

f"(0)=0, Yn=0,1,..., neN, (44)

The Bernoulli numbers are defined to be the coefficients of the taylor expansion for this function. However,
to obtain them we have to go a different way than usually.

fx)=>] %x" 45)

n=0

by definition we have the taylor series for the exponential function:

Xk
exzzzx—' 46)
k=0 "
1 = (xkY 1 ! k-1 -t ) Lk -1
fx) = M‘(;(F);) _(’;( ! )) —(;((kﬂ)!)) @7
0 B,
= men -
n=0 '
By ) [ xk -
- (;Wx )(g((kﬂ)!))_l (49)

Now we make use of the Cauchy Product of series (see Appendix A):

B 00 n kak xn—k B 00 n xn
1_;)(k=0 k! (n—k+1)!)_;(;BkM) (50)

We use the definition of n choose k to rewrite this (see Appendix B):

X [& n+1 xn
1:%(23,{ N ))m (51)

This equation is somewhat equivalent to a binomial expression if one defines the exponent of B to be
understood as a subscript (Then compare eqn. (51) with (50)):

n+1
(B+1)"' — gl = ZBkl"“k(n:l) B (52)
k=0

. 1 1 1 1
k=0 k=0

2.2 The Recurrence Formula

Now the procedure of comparison of coefficients yields the first Bernoulli number By:

0 o+1 x0 It
:Z —By— = = By=1 (54)
0+1) ot 1!

For the following numbers we use a recurrence formula by noting that comparison of coefficients tells us:
For all n greater 0, the sum in the brackets of equation (51) has to vanish!
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. 1
ZBk("+ ):0 Vn>1, neN, (55)
k=0 k

A nice interpretation of this formula is sugested by the similarity to the Binomial expansion introduced in
equation (50) and (51). We only have to write down the appropriate row of the Pascal Triangle for (B +1)"*!
without the last term

1
n=1 0=By+ B; :)BI:—5
1
n=2 0=By+3B1+3B; @Bgzg
n=3 0=By+4B;+6B>+4B;3 = B3=0
1
n=4 0=By+5B;+10B,+10B3+ 5B, =>B4=—%
n=>5 0=By+6B;+15B,4+20B3+15B,+6B8B;5 = B5;=0

1
n=6 0=By+7B1+21B,+35B3+35B4,+21B5+7Bs = Bg=—

n |[0]1 [2]4 6 |8 10 [ 12 14 [ 16 18 |20
B, | 1| -1 | 1| _L | L | _L |5 | _®69 |7 | _3617 | 43867 | _174611
n 2 6 30 42 30 66 2730 6 510 798 330

Table 1: some Bernoulli Numbers, note: By,,1 =0 Vn>1

3 The Riemann-Zeta Function  (x)

The aim will be to express the Riemann Zeta function with the help of the Bernoulli numbers. To do so we
will find two notions of one and the same expression and eventually compare both to obtain the result.

3.1 First Notion of § coth%

~ =~
X X xcoshy xeite 2 e
—coth— = — 2= T X 3 56
2 2 Zsinhg ZeE—e_E ez (56)
x e +1 X X B, X
= — = 4+ —= —xn+— 57
2e*—1 e*—1 2 ; ! 2 (67
If we now note that Bp =1 and B; =—1/2 we get
X x  1x0 x! — B, , x — B, ,
PR Il TR DR Sl Iy (58)

Now it also gets clear why table 1 only lists even subscripts of Bernoulli numbers. The cotangens hyper-
bolicus, being a quotient of an even and an odd function, is odd again. x is an odd function as well, and
hence ’Z—C cothg is an even function. Therefore, by this representation of our series we note that B,,4; =0
for all n greater or equal 1. (B2,4+1 =0 Vn=1,2,..)

Therefore we can write down more succintly:

[o¢]
X X B>y,
Zcoth==1+ x2n 59
2 2 ; 2n)! 9
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3.2 Second Notion of  coth §
3.2.1 Fourier Series of cos (y x)

In this section we will calculate the Fourier Series of the following function g(x). Later we will take a special
value for x in the found expression to continue:

g(x)=cos(yx), yeR\Z, D=[-x,x] (60)

The general formula of the Fourier series is:

_ Qo N .
gx)= 7—%;(@ coskx+ by sinkx) (61)

Where it saves a lot of time to note that the coefficients by are all zero, since our founction is even! I will
also use the following relations during the calculation of a;:

1
cosxcosy = - [cos(x—y)cos(x+y)],  sin(—x)=—sin(x)

sin(a 4+ b) = sin(a)cos(b) + cos(a)sin(b), sin(km)=0, cos(km)=(-1)

+

+7
1 1
cosyxcoskxdx = EJ > (cos (yx —kx)cos(yx+kx))dx (62)
-7

Q

-

I
A=
I >

T

1 [sin((y—k)x) cos((y+k)x)]" 1 (sin((y—k)n) cos((y+k)n)
= — + =— + (63)
21 y—k y+k U 18 y—k y+k
! ( (y +k) (sinymcoskr —sinkmcosyn)+ (y — k) (sinymcoskm+sinkmcosyn) ) o
7 +k)(y-k)
_ 1 (ysin(ym)(—=1)* + ksin(y m)(—-D¥ +y sin(y 7)(—1)* — ksin(y m)(—1)¥ 65)
oo y2—k?
1 (2ysin(ym)(—1)*
_ 1 66
n ( y2—k? ©0
+n +7
1 11 1 (2
ap= —J cos(yx)dx = — [— sin(yx)} =— (— sin(yn)) (67)
) . T ly . T\y
Plugging these coefficients back into equation (61) gives our Fourier Series of g(x):
sin(ym) <=1 (2ysin(ym)(—1)*
= — | = k 68
cos(yx) ) +; p ( k2 cos(kx) (68)
Now we consider the special case x = 7:
sin(y ) [1 > (Zy(—l)k) k]
cos(ym)= —+ (-1 (69)
T |y kzzl: yi—k? |
cos(ym) 1 <= 2y
= —=__ —rcot 70
“sinGm) "y +kz=;y2—k2 reotym) (70

This is the so-called partial fraction decomposition of the cotangens function.
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3.2.2 Transformation to % coth ’2—‘

We will now transform the regular cotangens and its partial fraction decomposition into the second form
of the cotangens hyperbolicus we need for the comparison ahead.

1(el><ly +e- txzy) . (e,y/_}_ey/)

cot(iy’)= = - — = —jcoth(y’ 71
( y ) (elxzy e—ley) (e—y _ey) (J’ ) ( )
We multiply this equation by i and let y’ =y« to fit our purposes:
incot(iy’)=mcoth(y’)= incot(iym) = mcoth(y ) (72)
J1r & 2y | 1 & 2y 1 &y
ncoth(yn)=1i |—,—+ S| =t ) —S—0=—+) (73)
| iy ;(ty)z—kzj y ;—yz—kz y ;yzﬂcz
Now we will do the following substitution to get the right arguement in the cotangens hyperbolicus:
ol = al = al (74)
= — = — mn=—
Y 2 Y 2n 2y
x x I & 2
— coth (—)=—+Z = Y (75)
2y 2 y n=1 3.2 + n2
X x © 2k = 2x2
= Zcoth(=|=1 =1 —_— 76
2 (2) - ,1;‘—2+n2 +le2+47r2n2 @6
n= 7-[2 n=

We need to recognize that this infinite sum represents a geometric series (see Appendix C)

00 N 2
a7 n? X
_Z( = — = (77)
2 2) 2 2 272
o= 4m°n 1+47:2n2 X°+4nn
00 2k
= S (i) (78)
o 2nn
X X x 2k >
:—coth(—)—1+2ZZ( 1)k+1( ) —1+2Z[( Py Zk]xz’c (79)
2 2 = k= 7= (27n)

3.3 Comparison and Result

Now we compare our found equations (79) and (59)

x x > > 1
= coth (—) = 1+2 —1)kH! 2k (80)
2 02 Z =D ;(Znn)% *
_ BZn 2n
= +Z it @1
:>Z ( 1)k+lz xzk_l N BZk ka (82)
)Zk 24 (2k)!
Comparison of coefficients ylelds.
— 1 1 B
_1)k+1 _ o D2k
=1 ;(27171)2" 2 (2k)! ®3)
N L k+l(g Bok  _
;n% = (Ve S o = ek (84)

This is the final result for the Riemann Zeta function of even integers. Up to now, there is no closed
form for odd integers known to man. It also follows (since we have a sum of non negative numbers) that
Ba(—=1)F1 > 0.
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3.4 Application

The first few results of the Riemann Zeta function are the following:

_ oo__ 2(97)2 =2 _7'[_2
(2) = ; (-1°@n) 2(2), By=
k=1
- 287 m
_ 3(27)4 _
& = ; =V Sy 2(4)' a Mg
k=2
B 0 i_ ey 2676 _7-5_6
&= ;nG_( e )2(6)' 2%61° 945
k=3

Further studies on and special application of the Riemann Zeta function:

Z _1(1+1+1+1+)_1+1+1+1+
La2n+2)p  2e\1P 20 3p 4r V) (Ix2)P 0 (2x2)P 0 (3x2)P (4x2)P
—————
even numbers
1 1 1 1 I AR U |
= wtetetet T wlw T W
n=

1 1
)= Zn” Z(2n+1)l’ Z(2n+2)P Z(2n+1)p+2_vnzﬁ

odd numbers even numbers

1 - 1 2r —1
> W 50=2 Gy = W

1 1 1 1 1 > 1 x 1 2P —1
1» 2P+3p 4P+5P ;(2n+1)l’ Z(n+1)” ( ( 2p ) )g(p)

20 -2 (—1)n
( 2r )g(p)_;(n—i—l)P

— (-p*  2r-2
Z(n+1)f’ Y

o=
> 1 2r—1
Z: Cnirly  2p
o0

2

1
@n+2)p P

15

(85)

(86)

87)

. (88)

(89)

(90)

91)

(92)

(93)

94

(95)

(96)

Note that one can not put p =1 in equation (94) to obtain a result for (1) in dependnece on In(2) since the
Riemann zeta function has a singularity at this point due to its reduction to the diverging harmonic series

there.



A CAUCHY PRODUCT

APPENDIX

A Cauchy Product

(0 () -5 (S

16

97

Note: If both series on the left converge absolutely, the Cauchy series converges absolutely as well. In this

case, its limit is the product of the limits of the series on the left.

B nchoosek

n n!
=—— for n,
(k) =) orn,keN

C The Geometric Series

sn = l4+g'+q*+q°+...+q"
SaXq = q+q*+q*+...+q"+q"™!

Substraction of equation (112) from (111) gives

n l_qn+1
sil=q)=1-q"" = s,=) q*=
k=0 1—q
n+1 1_qn0—1+1 qng_ n+1 o)
n—Sn, = Zq 1—q = 1—g :Z qfor{q{<1
o0

k z

= z" =
; 1—-z

D Special Functions

1 2 _ el/z 2 ez
(Zcosh(z/Z)) N (ez/2+e‘z/2) ez/z) - m
I'x) = f “le?dz = (x—DI'(x—1) = (x—1)! forxeN
0
>4 1
(o) = ) —

3
Il
—

(98)

(99)
(100)

(101)

(102)

(103)

(104)

(105)

(106)
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