Stirling's Approximation

Markus Selmke

13.04.06

1 Stirling's Approximation

$$
\begin{align*}
\ln (n!) & =\ln (n)+\ln (n-1)+\ldots+\ln (1)=\sum_{k=1}^{n} \ln (k)=\sum_{k=1}^{n} \ln (k) \times((k+1)-k)=\sum_{k=1}^{n} \ln (k) \Delta k \tag{1}\\
& \approx \int_{k=1}^{k=n} \ln (k) \delta k=[k \ln (k)-k]_{1}^{n}=n \ln (n)-n-(1 \ln (1)-1)=n \ln (n)-n+1 \\
& \approx n \ln (n)-n \quad \text { for large } n \tag{2}\\
n! & \approx e^{n \ln (n)-n+1}=n^{n} e^{-n+1} \tag{3}
\end{align*}
$$

Figure 1: The Integration as an appoximation for the actual summation
We will use a more precise form of Sterlings Approximation though. To do so we will use the expansion of the factorial to the real line, namely the Gamma function:

$$
\begin{align*}
n! & =\Gamma(n+1) \\
\Gamma(n) & =\int_{0}^{\infty} t^{n-1} e^{-t} \mathrm{~d} t \\
n! & =\int_{0}^{\infty} t^{n} e^{-t} \mathrm{~d} t \tag{4}
\end{align*}
$$

further we note the following: The derivative of the logarithm of the integrand is

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \ln \left(t^{n} e^{-t}\right)=\frac{-e^{-t} t^{n}+n t^{n-1} e^{-t}}{e^{-t} t^{n}}=-1+\frac{n}{t} \tag{5}
\end{equation*}
$$

Hence we see that the integrand is sharply peaked at $t \approx n$. Here we expect the highest contribution to the integral. Substitution of variables $t=n+\epsilon$ with $\epsilon \ll n$ then gives:

$$
\begin{align*}
\ln \left(t^{n} e^{-t}\right) & =n \ln (t)-t=n \ln (n+\epsilon)-(n+\epsilon) \tag{6}\\
\ln (n+\epsilon) & =\ln \left(n\left(1+\frac{\epsilon}{n}\right)\right)=\ln n+\ln \left(1+\frac{\epsilon}{n}\right)=\ln n+\frac{\epsilon}{n}-\frac{1}{2} \frac{\epsilon^{2}}{n^{2}}+\frac{1}{3} \frac{\epsilon^{3}}{n^{3}}-\ldots \\
n \ln (n+\epsilon) & =n \ln n+\epsilon-\frac{1}{2} \frac{\epsilon^{2}}{n}+\ldots \tag{7}
\end{align*}
$$

So we get the following expression when we substitute eqn (7) in (6):

$$
\begin{equation*}
\ln \left(t^{n} e^{-t}\right) \approx n \ln n+\epsilon-\frac{1}{2} \frac{\epsilon^{2}}{n}+\ldots-n-\epsilon \approx n \ln n-n-\frac{\epsilon^{2}}{2 n} \tag{8}
\end{equation*}
$$

Now we take the exponential on both sides of equation (8) and plug it into (4) to obtain:

$$
\begin{align*}
t^{n} e^{-t} & \approx e^{n \ln n} e^{-n} e^{-\frac{\epsilon^{2}}{2 n}}=n^{n} e^{-n} e^{-\frac{\epsilon^{2}}{2 n}} \\
n! & \approx \int_{-n}^{\infty} n^{n} e^{-n} e^{-\frac{\epsilon^{2}}{2 n}} \mathrm{~d} \epsilon \quad \text { where } \epsilon=t-n \text { was used for the boundaries } \\
& \approx n^{n} e^{-n} \int_{-n}^{\infty} e^{-\frac{\epsilon^{2}}{2 n}} \mathrm{~d} \epsilon \approx n^{n} e^{-n} \int_{-\infty}^{\infty} e^{-\frac{\epsilon^{2}}{2 n}} \mathrm{~d} \epsilon \\
& =n^{n} e^{-n} \sqrt{\frac{\pi}{1 / 2 n}}=n^{n} e^{-n} \sqrt{2 \pi n}=n^{n+1 / 2} e^{-n} \sqrt{2 \pi} \tag{9}\\
\ln (n!) & \approx \ln \left(n^{n+1 / 2} e^{-n} \sqrt{2 \pi}\right)=(n+1 / 2) \ln n-n+\frac{1}{2} \ln (2 \pi) \tag{10}
\end{align*}
$$

If you compare equation (10) with (2) which was found the easy way you see that our more sophisticated one reduces to the (10) in the limit where n is large.

$$
\begin{equation*}
n!\approx n^{n+1 / 2} e^{-n} \sqrt{2 \pi}=n^{n} e^{-n} \sqrt{2 \pi n} \tag{11}
\end{equation*}
$$

