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1 Stirling’s Approximation

ln (n !) = ln (n )+ ln (n −1)+ ...+ ln (1) =
n
∑

k=1

ln (k ) =
n
∑

k=1

ln (k )× ((k +1)−k ) =
n
∑

k=1

ln (k )∆k (1)

≈
∫ k=n

k=1

ln (k )δk = [k ln (k )−k ]n1 = n ln (n )−n − (1 ln (1)−1) = n ln (n )−n +1

≈ n ln (n )−n for large n (2)

n ! ≈ e n ln(n )−n+1 = n n e−n+1 (3)

Figure 1: The Integration as an appoximation for the actual summation

We will use a more precise form of Sterlings Approximation though. To do so we will use the expansion of
the factorial to the real line, namely the Gamma function:

n ! = Γ(n +1)

Γ(n ) =

∫ ∞

0

t n−1e−t dt

n ! =

∫ ∞

0

t n e−t dt (4)
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further we note the following: The derivative of the logarithm of the integrand is

d

dt
ln
�

t n e−t �=
−e−t t n +nt n−1e−t

e−t t n
=−1+

n

t
(5)

Hence we see that the integrand is sharply peaked at t ≈ n . Here we expect the highest contribution to the
integral. Substitution of variables t = n +εwith ε� n then gives:

ln
�

t n e−t � = n ln (t )− t = n ln (n +ε)− (n +ε) (6)

ln (n +ε) = ln
�

n
�

1+
ε

n

��

= ln n + ln
�

1+
ε

n

�

= ln n +
ε

n
−

1

2

ε2

n 2
+

1

3

ε3

n 3
− . . .

n ln (n +ε) = n ln n +ε−
1

2

ε2

n
+ . . . (7)

So we get the following expression when we substitute eqn (7) in (6):

ln
�

t n e−t �≈ n ln n +ε−
1

2

ε2

n
+ . . .−n −ε≈ n ln n −n −

ε2

2n
(8)

Now we take the exponential on both sides of equation (8) and plug it into (4) to obtain:

t n e−t ≈ e n ln n e−n e−
ε2

2n = n n e−n e−
ε2

2n

n ! ≈
∫ ∞

−n

n n e−n e−
ε2

2n dε where ε= t −n was used for the boundaries

≈ n n e−n

∫ ∞

−n

e−
ε2

2n dε≈ n n e−n

∫ ∞

−∞
e−

ε2

2n dε

= n n e−n

Ç

π

1/2n
= n n e−n

p
2πn = n n+1/2e−n

p
2π (9)

ln (n !) ≈ ln
�

n n+1/2e−n
p

2π
�

= (n +1/2) ln n −n +
1

2
ln (2π) (10)

If you compare equation (10) with (2) which was found the easy way you see that our more sophisticated
one reduces to the (10) in the limit where n is large.

n !≈ n n+1/2e−n
p

2π= n n e−n
p

2πn (11)


