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1 THE BERNOULLI NUMBERS 1

Abstract

This Document will introduce a generating function for the Bernoulli numbers and give an explicit
recursion formula based on it. The first few will be calculated as an example. In the following sections
steps will be taken in order to get a closed formula for the even-valued Riemann Zeta function. Then
some applications for the Zeta function are formulated including an informal prove for the Euler pruduct
formula. Finally another calculation involving the Bernoulli numbers and its generating function will
lead to a closed formula for the finite sum of exponentials.

1 The Bernoulli Numbers

1.1 The Generating Function

By generating function usually a function is meant, whose Taylor expansion yields the seeked for expres-
sion. In our case it will be a simple fraction:

X

flx)= Vx #0, f"(0)=0, Vn=0,1,..., neN, (1)

The Bernoulli numbers are defined to be the coefficients of the taylor expansion for this function. However,
to obtain them we have to go a different way than usually.

er —

00

B, ,
flx)=3 @

by definition we have the taylor series for the exponential function:

e = i x—| 3)

(& ))1 ) (,:0 ((k)fn!)) e

-1
1 X (xk) 1 >
flx) = — = (_)_) :(
s (26 (3
_ %xn 5)
n=0 """

- (Se) (Z(m)) ©

n=

Now we make use of the Cauchy Product of series (see Appendix A):

_ 0 n kalc xn—k _ o) n xn
I_Z( k! (n—k+1)!)_Z(kzoBkk!(n—i—l—k)!) @

n=0 \ k=0 n=0

We use the definition of n choose k to rewrite this (see Appendix B):

o [ n+1 x"
=3 (2 () ®

k=0
This equation is somewhat equivalent to a binomial expression if one defines the exponent of B to be
understood as a subscript (Then compare eqn. (10) with (8)):

+1
(B+ l)I’H—l _ Bn+l — nz Bk1n+l—k (l’l ]-: 1) _ Bn+l 9)
k=0

n n

+1 +1 +1
) Bk(nk )+B"+1(Z+1)—B"+1:§ Bk(nk ) (10)
k=0 k=0
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1.2 The Recurrence Formula

Now the procedure of comparison of coefficients yields the first Bernoulli number By:

. o+1 X0 11 B
Z T =Bogmy = Bo=1 (11

For the following numbers we use a recurrence formula by noting that comparison of coefficients tells us:
For all n greater 0, the sum in the brackets of equation (8) has to vanish!

! +1
ZBk(” ):0 Vn>1, neN, (12)
k=0 k

A nice interpretation of this formula is sugested by the similarity to the Binomial expansion introduced in
equation (9) and (10). We only have to write down the appropriate row of the Pascal Triangle for (B +1)""*
without the last term

n=1 0= B+ By :Blz—%
n=2 0=By+3B;+3B, :>Bzzé
n=3 0=By+4B;+6B,+4B;3 = B3;=0
n=4 0=By+5B1+10B,+10B3+5By =>B4=—%
n=>5 0=By+6B;+15B,+20B3+15B;+6Bs = B;=0
n=6 0=By+7B;+21B,+35B3+35B4+21B5+ 7B :Bgzé

n |01 [2]4 6 |8 10 | 12 14 | 16 18 | 20
Bl 1| 1|1 1| L |_L |5 | _69 |z | _s617 | 43867 | _1746m1
n 2 6 30 42 30 66 2730 6 510 798 330

Table 1: some Bernoulli Numbers, note: By,11 =0 Vn>1

1.3 Stirling’s Approximation and Approximation of B,

In(n)) = Inn)+In(n—1)+...+In(1) =iln(k) =iln(k) x(k+1)—k) =iln(k)Ak (13)
k=1 k=1

k=1

k=n
In(n!) =~ f In(k)6k=[kIn(k)—k]}=nln(n)—n—-1In(1)—1)=nln(n)—n+1
k=1
In(n!) ~ nln(n)—n for large n (14)
n & enln(n)—n—H — nne—n+1 (15)

We will use a more precise form of Sterlings Approximation though. To do so we will use the expansion of
the factorial to the real line, namely the Gamma function:

n = T'(n+1)

o0
J t" e tdt
0

o0
nl = f t"e 'dt (16)
0

I'(n)
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Figure 1: The Integration as an appoximation for the actual summation

further we note the following: The derivative of the logarithm of the integrand is

d —e lfn4prnlet n
—In(t"e ) = =—1+—
dr ( ) e~ itn t

a7

Hence we see that the integrand is sharply peaked at ¢ ~ n. Here we expect the highest contribution to the

integral. Substitution of variables ¢ = n + € with € < n then gives:

In(¢t"e *)=nln(t)—t=nln(n+e€)—(n+e)

1e2 168
In(n+e) = ln(n(l+%))=lnn+ln(l+%)=lnn+%——€—+—€——...

1¢€?
nln(n+e€) = nlnn+e—§7+...

So we get the following expression when we substitute eqn (19) in (18):

ln(t”e_t)wnlnn+6—16—2+...—n—emnlnn—n—E—2
2n 2n

Now we take the exponential on both sides of equation (20) and plug it into (16) to obtain:

62 62
t"e' ~ e"MeMeTm=n"e e m
o0 2
n! =~ n"e e de where € = t — n was used for the boundaries
-n
[o ¢} o0
6'2 62
A n”e_"f e_anENn”e_”f e zmde
—n —00
T
= ne | —— =n"e "V2rn=n"t"2e"V2or
1/2n
1
In(n!) ~ ln(n"“/ze_"«/Zﬂ:):(n+1/2)lnn—n+zln(271:)

(18)

(19)

(20)

21

(22)
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If you compare equation (22) with (14) which was found the easy way you see that our more sophisticated
one reduces to the (14) in the limit where 7 is large.

7
10 T T T T T T T T

L Gamma fct
10° F —© n! K

: Stirling’s approx. (eqn. 21) Y
v Seirling’s (rough) Approximation (egn. 15)

10°

We will use equation (21) to obtain an approximation for the Bernoulli numbers!

(2k) & (2k 2K 12 o=2k o = (2k)*K e =2\ Ank (23)
Using equation (76) we get:
OOL_ 1)k o Bk
;n% = CUMent o =ek
=
2(2k)! 2(2k)** e~2kVark
By = (12 o e ZER T VATR o N
(2m) (2m)
(25)

If we seek for appoximate coefficients of the Byy’s we consider the limit of {(2k) as k grows:

. o 1
CECRIMIES

Since in this limit only the first term of the series, which is equal to one, survives.
Hence we finally obtain for our estimate for Byy:

2(2k)* e~2kvark kO —
sz ~ (_1)k+1 ( ) (26 )Zk T :4k2k+1/2e—2kﬂ.1/2—2k =4 (E) kﬂ' (27)
T

Also knowing the following functional relation, the reflection formula, we can compute ¢ (1 —2n):!

Z(x) = 2*7%'sin (%xn) rl—x)¢(1-x)

BZn

x=1-2n = {((1-2n)=-
2n

Iproof can be found here: http://scipp.ucsc.edu/ haber/ph116A/pibern.pdf
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1.4 Some Series using the Bernoulli Numbers

In this section we will use equation (50) and (63) which will be derived in the next section in detail. However
we will have to modify them slightly by substituting x for % in equation (50) (= x’ =2x):

x—/cothx—, =1 +§: Ban x?"=xcothx=1 +Z 4" B x*" = Z 4" Ban x2" (28)
2 2 i (2n)! p (Zn)' (2n)'

To transform this series representation to the regular cotangens we use quation (63) with y’ =iy

cot(—y)=—cot(y)=—icoth(iy) = ycot(y)=(iy)coth(iy) (29)
_ - 4n BZV! gn .2 4n(_]~)nB2n 2n
xcotx—;) 7 (i2)" Z:—(Zn)! x (30)

Dividing by x we get the following two series expressions for cotx and cothx:

4" By,
cothx = C j' x2n1 (31)
n)!
4”( 1) BZn 2n—1
cotx = Z o 32)

We will use them and additionally some trigonometric identities to derive the Taylor expansion of the tan-
gens function and the tangens hyperbolicus.
cos(2x) cos(x) 2cos(x)cos(x)—2sin(x)sin(x) cos(x)

~tanx =2cot(2x) - cot(x) =2 sin(2x) B sin(x) - 2sin(x)cos(x) B sin(x) (83)

_(_ 4n ( 1) BZn gn 102n—1 4”(_1)nB2n 2n—1 4n(4n_1)( 1)n+132n 2n 1
tanx =(-1) ;—(2 T 2 ;—(Zn)! X nz:;) en) (34)

Using a similar relation for the tangens hyperbolicus we obtain the corresponding series expression:

cosh(2x) cosh(x) 2cosh(x)cosh(x)+2sinh(x)sinh(x) cosh(x)

tanhx coth(2x) - coth(x) sinh(2x) sinh(x) 2sinh(x)cosh(x) sinh(x) (35)
4" BZn 4" BZn 4" (4n - 1) BZn

t h 2 2n 1 2n 1 2n 1__ 2n—-1 36

. Z 2n) " Z 2n) " Z eny (30

Summarizing we have:

cotx cothx tanx tanh x

00 4"(—1)"Byp 2n—1 00 4"32n 2n—1 00 47(4"—1)(=1)""1B,, 2n—1 00 47(4"—1)Byy 2n—1
Dm0 "y X Dnmo @ ¥ 2nmt @n)! x D R
1_1._1,3__2,5_ 1,1, 1,3, 2 ,5_ 1.3, 2,5 7 1,342 ,5_ 17
Y 3N T TaEX T | xT3X T T X X+ 3X°+ 5% +315x to | XT3 X0 5

Table 2: some series representations of trigonometric functions. (cscx = cotx/2 — cotx also involves By,,)

Now we use the general formula of the series of the sinx function to obtain a series representation of the
arcsinx

1)’1 x2n+l S 1)" 2n

(smx) |x 0 (- & (eos ) ispx (1) x
sinx = Z —Z ent 1) cosx—; — —; 2n) 37

We first want to find the integral of arcsin x using the following property:
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Theorem 1 Let f : (a,b) — R be strictly monotonic and continuous. Suppose that f'is differentiable at x €
(a,b). Then the inverse function g = f~1: f((a,b))— R is differentiable at y = f(x) with

g’ (J’) = ﬁ = f/(gl(y))

flx) = sin(x)=y  g(y)=arcsin(y)
,( ) = 1 _ 1 _ 1 _ 1 _ 1 38)
§v FO T PO 05 e VI

We start to construct the Taylor series around a = 0 of the derivative of arcsin(x):

1 1 1
x)= 0)=1 ; (1) W)= =
f=F= [0 0= r—m P03
1x3 1x3 1x3x%x5 1x3x5
2)(y) = @)= = . By ®o)= ——"*<
== 0= gg 0 W= P
(39
At this point we note the following system in the derivatives:
5x3x1 5x4x3x2x1 6 (40)
2x2x2 23x3!x2x2x2 3232
Hence we get the general series expression and, afterwards, by substituting x by x2:
1 o (2k)Ixk 1 o (2k)1x2k
B Z (2k) o (2K) 4D

= = [ -
T—x £ (2% (k) J1—x2 =2k (kY

...and finally we do the following trick:

. ~ 00 (Zk)!xzk (2k)x2k+1
arcsin(y) = f ; 2k (k!)z Z 22k (kD)2 (2k +1) (42)

A similar technique gives us the formula for the arctan x:

f(x) = tan(x) g(y)=arctan(y)

1 1 1
’ = =(cosx)? (43)
g f(x) ( y= (tanx)*+1 1+J/
1 & N N
— = ;xk (Geometric Series) = o x2 kg = ;x% (-DF @4

© x2k+1( 1)k

arctanx = x2k(=1)F (45)
| e =y

=0

We now complete this discussion by the following two series:

7r T (2k)!x2k+1
arccosx = — —arcsinx=—— T (46)
2 2 22k(k') 2k+1)
0y 2k+1 k
T (-1
arccotx = ——arctanx—— _— 47
2 2 kz 2k+1) (47
arcsinx arccosx arctan x arccot x
(Zk |x2k+l m_ (Zk yx2k+l x2k+1( l)k x2k+1( 1
Zk =0 22 (k2(2k+1) Zk =0 2% (k2(2k+1) Zk =0 (2k+1) Zk =0 (2k+1)
1,34, 3,5, 5,7 T _,_1,3_3,5_ _1,341,5_ 1,7 T _ 1,3_1,5
X+ X+ X+ 5 x +. >~ X—zX 10X = | X—3X°+Ex x| gx+3x X7+
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2 The Zeta Function

The aim will be to express the Riemann Zeta function with the help of the Bernoulli numbers. To do so we
will find two notions of one and the same expression and eventually compare both to obtain the result.

2.1 First Notion of § cothg

~ =~
X X xcoshs xeite ? ef
—coth— = = 2= T X 3 48
2 2 Zsinhg 2e2—¢7 2 ez 48)
xer+1 X X =B, X
= — = + —= —xn+— 49
2e*—1 e*—1 2 nz:;) ! 2 (49)
If we now note that Bp =1 and B; =—1/2 we get
X x  1x°  x! 2. B,
—coth—=—— + —x + =1+ —x (50)
R TR Z

Now it also gets clear why table 1 only lists even subscrlpts of Bernoulh numbers. The cotangens hyper-
bolicus, being a quotient of an even and an odd function, is odd again. x is an odd function as well, and
hence % cothg is an even function. Therefore, by this representation of our series we note that B,,+; =0
for all n greater or equal 1. (Bz,,41 =0 Vn=1,2,...)

Therefore we can write down more succintly:

[o9)
X X By,
Zcoth= =1+ x*" 51
207 ; 2n) 1)

2.2 Second Notion of 3 coth 7
2.2.1 Fourier Series of cos (yx)

In this section we will calculate the Fourier Series of the following function g(x). Later we will take a special
value for x in the found expression to continue:

gx)=cos (yx), yeR\Z, D=[-x,x] (52)
The general formula of the Fourier series is:
gx)= @‘FZ(W coskx+ by sinkx) (53)
2 =

Where it saves a lot of time to note that the coefficients by are all zero, since our founction is even! I will
also use the following relations during the calculation of a:

1
cosxcosy = [cos(x—y)cos(x+y)], sin(—x) = —sin(x)

sin(a + b) = sin(a)cos(b) + cos(a)sin(b), sin(kn)=0, cos(kn)=(-1)*
+ +n

1 1
cosyxcoskxdx = EJ > (cos (yx —kx)cos(yx+kx))dx (54)

-

ar =

S
| 2
A

1 [sin((y—k)x)  cos((y+k)x)]" 1 (sin((y—k)m) cos((y+k)n)

- 5{ y—k ' y+k ]_ﬂ_g( y—k T ytk ) o)

_ 1 ( (y +k) (sinymcoskrn —sinkmcosyn)+ (y — k) (sinymcoskm+sinkmcosyn) ) 56)
T (y+k)(y—k)
1 (ysin(ym)(—1)* + k sin(y )(—1)* + y sin(y 7)(—1)* — k sin(y 7w)(—1)*

R ( 2_ 2 ) (57
s y:i—k

1 (2ysin(ym)(—=1)F

= E (W) (58)
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+n +m
1 11 1(2
ag= —J cos(yx)dx = — [— sin(yx)} =— (— sin(y n)) (59)
T . Ty . T\Y
Plugging these coefficients back into equation (53) gives our Fourier Series of g(x):
sin(ym) <=1 (2ysin(ym)(—1)*
cos(yx)= I +k2:1: p (W cos(kx) (60)

Now we consider the special case x = 7:

cos(ym) = 1n(y7z:) {%"‘Z(Zy( 1)k )( 1)’“} 61)
k=1
cos(ym) 1 <= 2y

This is the so-called partial fraction decomposition of the cotangens function.

2.2.2 Transformation to § coth ’2—“

We will now transform the regular cotangens and its partial fraction decomposition into the second form
of the cotangens hyperbolicus we need for the comparison ahead.

1(e1><ty +e~ szy) ,(e‘y'—i-ey')

cot(iy)= =i ; ~ =—jcoth(y’ 63
( J’) = (ez><ly —e ley) (efy _ey) (J’) (63)
We multiply this equation by it and let y’ = y 7 to fit our purposes:
incot(iy’)=mcoth(y’)= incot(iym) = mcoth(y ) (64)
1 & 2y |1 & 2y 1 &y
th(ym)=1i [— — | == —_— == — 65
ncoth(y ) l|_iy+;(iy)2—k2J y+;_y2_k2 y+;y2+k2 (65)
Now we will do the following substitution to get the right arguement in the cotangens hyperbolicus:
N AN ad (66)
m=— = — m=—
YT=5 Y=o 2y
1 & 2
— coth (f) == Z Y (67)
2 2y S 5+n?
= 471z
X x = 2% = 2x2
:>Ecoth(§)— +Zﬁ+n2_1+2—x2+4n2n2 (68)
n=1 42 n=1
We need to recognize that this infinite sum represents a geometric series (see Appendix C)
- x2 \* - x?
‘Z(‘—z 2) S . - (69)
e\ 4nn 1_|_422 -~ x2+4nn

2k

2k 00 0 1
fon() g ) gl Sl @

n=1k= n=1
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2.3 Comparison and Result

Now we compare our found equations (71) and (51)

X ot (%) = ZOO _ kﬂzm L
2coth(z) = 1+2 2. (-1) 2, (Znn)zk]x (72)
BZn 2n
= 1+E ((2n )' (73)

k _ = Bak ¢
:Z[( Y +1Z(27‘cn)2k] - Z(Zk)' x )

Comparison of coefficients yields:

_1)k+1 N 1 _1 Bak

=1) ,12:;(27'571)2]c - 2(2k) (7)
o 1
;n = (et (sz)'—g’(Zk) (76)

This is the final result for the Riemann Zeta function of even integers. Up to now, there is no closed
form for odd integers known to man. It also follows (since we have a sum of non negative numbers) that
By (—=1)F1>0.

2.4 Application

The first few results of the Riemann Zeta function are the following:

_mi__z 232_2_7'[_2
{2 = ;nz‘( en) soy =m B = 77)
k=1

B ooi__3 4B4 __237-54 _7-[_4
[4) = ;n4—( DR o == Bi= g (78)
k=2

R 1 a4 Bs 2605 @b
o) = ;nfi_( D em) 56y = 2x61 2~ 915 @9
k=3

Further studies on and special application of the Riemann Zeta function:

1,1 1 1 1 1 1 1 1
;(2n+2)i’ - 27(17+2_P+37+47+"')_(1x2)10+(2x2)v+(3x2)P+(4><2)p+"‘(80)
%,—/
even numbers
1 1 1 1 1 &1 1
= 2—p+4—p+6—p+8—p+... = 2—pn:1ﬁ = 2—p€(p) (81)
| > 1 > 1 = 1 1 1
<tp)= ;7_;(2n+1)p+;(2n+2)lg _;(2n+1)%’+27;ﬁ (82)

odd numbers even numbers

1 - 1 2r—1
> - 50=2 Gy = (P (83)
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1 1 1 1 1 & 1 - 1 2P —1
T e ) Mo i Mowe il g B) KOBCE
_ (=2 N Y
B ( 2v )g(p)_nzo(n+l)l’ (65)

Summarizing we have also found the following infinite series:

N (D" 20 -2

Zo(nﬂ)” = ¢lp) (86)
00 op
Z: Cnilp (&7)
S 1

Note that one can not put p =1 in equation (86) to obtain a result for {(1) in dependnece on In(2) since the
Riemann zeta function has a singularity at this point due to its reduction to the diverging harmonic series
there.

2.5 Euler Product Formula

A similar arguementation as in equation (83) will help to prove the astonishing Euler product represanta-
tion formula of the Riemann Zeta function.

First we remove all elements that have a factor of Zi,, or in other words we remove all numbers n in the
Zetafunction that have the factor 2. To do so we substract equation (90) from (89):

1 1 1 1 1 1

lp) = 1_p+2_p+3_}9+4_p+5_p+6_p+"' (89)
1g’()— 1+1+1+1+1+1+ (90)
2w P T T e T T1or 12
=
(1 l)g()— . (91)
o )W T T T T T T

Now we proceed to remove all elements of that reduced form which have a factor of Si,, or in other words
we further remove all numbers n in the Zetafunction that have the factor 3. (Substract equation (93) from
(92))

(1 1)4()— . (92)
2p p) = » 3 50 7P 9P 11 T
1(1 1)g()— L L S L S S (93)
3P 20 )P T 3 T op T s o1 o7 Tazp
=
(1 1)(1 1):()— U S R (94)
3p 2 )W) T e T T T T

Repeating this process infinitely often with all prime numbers (only they, otherwise we substract some-
thing more than once) we remove all n from the Zeta function up to li,,'

O [ [ E

1 —sy-1
=(s)= = 1-p~*° (96)
*t l_[p:prime (l_p_s) p:!?ji[me( g )
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3 The Finite Exponential Sum

In this section we will derive a closed formula for the exponential sum »_;_, k! To do so we will again
compare two notions of one and the same object, in this case a finite series.

3.1 First Notion

Here we will bein by interpreting the sum of interest as a geometric series (see Appendix C). f(x) will be the
generating function discussed in Section 1.

1-— ex(n+1) ex(n+1) -1 X ex(n+1) -1

D= = = x f(x) ©7)
k=0

1—e* X e¥—1 X

Now we'll have a closer look at the second last factor and use the series definition of the exponential func-
tion.

exn+l) — 1 > (n+1)F 1 - (n+1F )1
— = (Z o1 ;=Z el 98)

k=0 k=1
Z (n + ].)k Z (n + 1)k+1 k (99)
. (k+1)

Plugging this result back into equation (97) and using the Cauchy product again (see Appendix A) gives:

ok = (n+ 1 ) o Bux” (e )
;e - (Z )(Z (k+1)! )_;r;) m! (l—l—l—m)!x (100)

n=0

00 1
= Z[Z '"(l;l)(”“)mm} (lj-ll)! (101)

=0 Lm=0

3.2 Second Notion

For our second notion of the sum of interest, we will use the definition of the exponential function inside

the sum first.
n

3.3 Comparison and Result

Comparing equation (101) and (102), which are expressions for the same finite series ZZ:o ek* we obtain:

w[l 1+1 —m-| x! _m[n -|xl
L Lﬂ;Bm( m )(fl+1)l+l J TS _Z lzli o (103)

1=0 Lk=0

1
Zk’ _(—Z (l+1)(n+1)l+1_m (104)

The first few integer values of 1 in eqn (104) give well known expressions

" 1< 2 n(n+1)
1 _ 2—m __
u 1< 3 o n(n+1)@2n+1)
2 _ - 3 m _
E_ kK = 3m§=OBm( )(n-l—l) — (106)

u 1< 4 n2(n+1)?
3 _ - 4—m —
;k = 1 Z B, (m)(l’l +1) —4 (107)
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APPENDIX

A Cauchy Product

() () %[ o)

Note: If both series on the left converge absolutely, the Cauchy series converges absolutely as well. In this
case, its limit is the product of the limits of the series on the left.

B nchoosek

for n, k € N we define:

AN n! (109)
k] kl(n—k)
n+1 (n+1)
_ 11
( k ) kl(n+1-k) (110)
C The Geometric Series
For{q{<1
sp = 1+qg'+q¢*+q*+...+q" (111)
saxq = q+q*+q*+...+q"+q""! (112)

Substraction of equation (112) from (111) gives

n l—q”“
sil—=q)=1—-qg"" = s5,=) g*= (113)
k=0 1-q
n 1 —gntl! 1 — gnho—1+1 no — gn+l1 o0 no
Sn=Sm=D_q"= g_ "9 4 "9 > D q= q (114)
k=ng l_q 1—6] l_q k=nyg 1—6]
= z" = (115)
o 1-z
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